Man Made Elements
Man Made Elements

-
In chemistry, a synthetic element is a chemical element that does not occur naturally on Earth, and can only be created artificially. So far, 20 synthetic elements have been created (those with atomic numbers 99–118). All are unstable, decaying with half-lives ranging from a year to a few milliseconds.
-
Nine other elements were first created artificially and thus considered synthetic, but later discovered to exist naturally (in trace quantities) as well; among them plutonium—first synthesized in 1940—the one best known to laypeople, because of its use inatomic bombs and nuclear reactors.
-
Synthetic elements are radioactive and decay rapidly into lighter elements—possessing half-lives so short, relative to the age of the Earth (which formed 4.54billion years ago), that any atoms of these elements that may have existed when the Earth formed have long since decayed. Atoms of synthetic elements only occur on Earth as the product of atomic bombs or experiments that involve nuclear reactors or particle accelerators, via nuclear fusion or neutron absorption.
-
Atomic mass for natural life is based on weighted average abundance of natural isotopes that occur in the Earth's crust and atmosphere. For synthetic elements, the isotope depends on the means of synthesis, so the concept of natural isotope abundance has no meaning. Therefore, for synthetic elements the total nucleuscount (protons plus neutrons) of the most stable isotope, i.e. the isotope with the longest half-life—is listed in brackets as the atomic mass.

Einsteinium
-
Einsteinium is a synthetic element with symbol Es and atomic number 99. It is the seventh transuranic element, and an actinide.
-
Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952, and named after Albert Einstein. Its most common isotope einsteinium-253 (half life 20.47 days) is produced artificially from decay of californium-253 in a few dedicated high-power nuclear reactors with a total yield on the order of one milligram per year. The reactor synthesis is followed by a complex procedure of separating einsteinium-253 from other actinides and products of their decay. Other isotopes are synthesized in various laboratories, but at much smaller amounts, by bombarding heavy actinide elements with light ions. Owing to the small amounts of produced einsteinium and the short half-life of its most easily produced isotope, there are currently almost no practical applications for it outside of basic scientific research. In particular, einsteinium was used to synthesize, for the first time, 17 atoms of the new element mendelevium in 1955.

Fermium
-
Fermium is a synthetic element with symbol Fm and atomic number 100. It is a member of the actinide series. It is the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared.[1] A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.
-
It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named afterEnrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside of basic scientific researc
Mendelevium

-
Mendelevium is a synthetic element with chemical symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranic element in the actinide series, it is the first element that currently cannot be produced in macroscopic quantities through neutronbombardment of lighter elements. It is the antepenultimate actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of sixteen mendelevium isotopes are known, the most stable being258Md with a half-life of 51 days; nevertheless, the shorter-lived 256Md (half-life 1.27 hours) is most commonly used in chemistry because it can be produced on a larger scale.